Description
summarize
is a fast version of summary.formula(formula,method="cross",overall=FALSE)
for producing stratified summary statisticsand storing them in a data frame for plotting (especially with trellisxyplot
and dotplot
and Hmisc xYplot
). Unlikeaggregate
, summarize
accepts a matrix as its firstargument and a multi-valued FUN
argument and summarize
also labels the variables in the new dataframe using their original names. Unlike methods based ontapply
, summarize
stores the values of the stratificationvariables using their original types, e.g., a numeric by
variablewill remain a numeric variable in the collapsed data frame.summarize
also retains "label"
attributes for variables.summarize
works especially well with the Hmisc xYplot
function for displaying multiple summaries of a single variable on eachpanel, such as means and upper and lower confidence limits.
asNumericMatrix
converts a data frame into a numeric matrix,saving attributes to reverse the process by matrix2dataframe
.It saves attributes that are commonly preserved across rowsubsetting (i.e., it does not save dim
, dimnames
, ornames
attributes).
matrix2dataFrame
converts a numeric matrix back into a dataframe if it was created by asNumericMatrix
.
Usage
summarize(X, by, FUN, ..., stat.name=deparse(substitute(X)), type=c('variables','matrix'), subset=TRUE, keepcolnames=FALSE)asNumericMatrix(x)
matrix2dataFrame(x, at=attr(x, 'origAttributes'), restoreAll=TRUE)
Value
For summarize
, a data frame containing the by
variables and thestatistical summaries (the first of which is named the same as the X
variable unless stat.name
is given). If type="matrix"
, thesummaries are stored in a single variable in the data frame, and thisvariable is a matrix.
asNumericMatrix
returns a numeric matrix and stores an objectorigAttributes
as an attribute of the returned object, with originalattributes of component variables, the storage.mode
.
matrix2dataFrame
returns a data frame.
Arguments
a vector or matrix capable of being operated on by thefunction specified as the one or more stratification variables. If a singlevariable, a function of a single vector argument, used to create the statisticalsummaries for extra arguments are passed to the name to use when creating the main summary variable. By default,the name of the Specify a logical vector or integer vector of subscripts used to specify thesubset of data to use in the analysis. The default is to use allobservations in the data frame. by default when a data frame (for List containing attributes of original data frame that survive subsetting. Defaults to attribute set to FUN
argumentby
may be a vector, otherwise it should be a list.Using the Hmisc llist
function instead of list
will resultin individual variable names being accessible to summarize
. Forexample, you can specify llist(age.group,sex)
orllist(Age=age.group,sex)
. The latter gives age.group
anew temporary name, Age
.summarize
. FUN
may compute any number ofstatistics.FUN
X
argument is used. Set stat.name
toNULL
to suppress this name replacement.type="matrix"
to store the summary variables (if there aremore than one) in a matrix.type="matrix"
, the firstcolumn of the computed matrix is the name of the first argument tosummarize
. Set keepcolnames=TRUE
to retain the name ofthe first column created by FUN
asNumericMatrix
) or a numeric matrix (for matrix2dataFrame
)."origAttributes"
of the object x
, created by the call to asNumericMatrix
FALSE
to only restore attributes label
, units
, and levels
instead of all attributes
Author
Frank Harrell
Department of Biostatistics
Vanderbilt University
fh@fharrell.com
See Also
label
, cut2
, llist
, by
Examples
if (FALSE) {s <- summarize(ap>1, llist(size=cut2(sz, g=4), bone), mean, stat.name='Proportion')dotplot(Proportion ~ size | bone, data=s7)}set.seed(1)temperature <- rnorm(300, 70, 10)month <- sample(1:12, 300, TRUE)year <- sample(2000:2001, 300, TRUE)g <- function(x)c(Mean=mean(x,na.rm=TRUE),Median=median(x,na.rm=TRUE))summarize(temperature, month, g)mApply(temperature, month, g)mApply(temperature, month, mean, na.rm=TRUE)w <- summarize(temperature, month, mean, na.rm=TRUE)library(lattice)xyplot(temperature ~ month, data=w) # plot mean temperature by monthw <- summarize(temperature, llist(year,month), quantile, probs=c(.5,.25,.75), na.rm=TRUE, type='matrix')xYplot(Cbind(temperature[,1],temperature[,-1]) ~ month | year, data=w)mApply(temperature, llist(year,month), quantile, probs=c(.5,.25,.75), na.rm=TRUE)# Compute the median and outer quartiles. The outer quartiles are# displayed using "error bars"set.seed(111)dfr <- expand.grid(month=1:12, year=c(1997,1998), reps=1:100)attach(dfr)y <- abs(month-6.5) + 2*runif(length(month)) + year-1997s <- summarize(y, llist(month,year), smedian.hilow, conf.int=.5)smApply(y, llist(month,year), smedian.hilow, conf.int=.5)xYplot(Cbind(y,Lower,Upper) ~ month, groups=year, data=s, keys='lines', method='alt')# Can also do:s <- summarize(y, llist(month,year), quantile, probs=c(.5,.25,.75), stat.name=c('y','Q1','Q3'))xYplot(Cbind(y, Q1, Q3) ~ month, groups=year, data=s, keys='lines')# To display means and bootstrapped nonparametric confidence intervals# use for example:s <- summarize(y, llist(month,year), smean.cl.boot)xYplot(Cbind(y, Lower, Upper) ~ month | year, data=s)# For each subject use the trapezoidal rule to compute the area under# the (time,response) curve using the Hmisc trap.rule functionx <- cbind(time=c(1,2,4,7, 1,3,5,10),response=c(1,3,2,4, 1,3,2,4))subject <- c(rep(1,4),rep(2,4))trap.rule(x[1:4,1],x[1:4,2])summarize(x, subject, function(y) trap.rule(y[,1],y[,2]))if (FALSE) {# Another approach would be to properly re-shape the mm array below# This assumes no missing cells. There are many other approaches.# mApply will do this well while allowing for missing cells.m <- tapply(y, list(year,month), quantile, probs=c(.25,.5,.75))mm <- array(unlist(m), dim=c(3,2,12), dimnames=list(c('lower','median','upper'),c('1997','1998'), as.character(1:12)))# aggregate will help but it only allows you to compute one quantile# at a time; see also the Hmisc mApply functiondframe <- aggregate(y, list(Year=year,Month=month), quantile, probs=.5)# Compute expected life length by race assuming an exponential# distribution - can also use summarizeg <- function(y) { # computations for one race group futime <- y[,1]; event <- y[,2] sum(futime)/sum(event) # assume event=1 for death, 0=alive}mApply(cbind(followup.time, death), race, g)# To run mApply on a data frame:xn <- asNumericMatrix(x)m <- mApply(xn, race, h)# Here assume h is a function that returns a matrix similar to xmatrix2dataFrame(m)# Get stratified weighted meansg <- function(y) wtd.mean(y[,1],y[,2])summarize(cbind(y, wts), llist(sex,race), g, stat.name='y')mApply(cbind(y,wts), llist(sex,race), g)# Compare speed of mApply vs. by for computing d <- data.frame(sex=sample(c('female','male'),100000,TRUE), country=sample(letters,100000,TRUE), y1=runif(100000), y2=runif(100000))g <- function(x) { y <- c(median(x[,'y1']-x[,'y2']), med.sum =median(x[,'y1']+x[,'y2'])) names(y) <- c('med.diff','med.sum') y}system.time(by(d, llist(sex=d$sex,country=d$country), g))system.time({ x <- asNumericMatrix(d) a <- subsAttr(d) m <- mApply(x, llist(sex=d$sex,country=d$country), g) })system.time({ x <- asNumericMatrix(d) summarize(x, llist(sex=d$sex, country=d$country), g) })# An example where each subject has one record per diagnosis but sex of# subject is duplicated for all the rows a subject has. Get the cross-# classified frequencies of diagnosis (dx) by sex and plot the results# with a dot plotcount <- rep(1,length(dx))d <- summarize(count, llist(dx,sex), sum)Dotplot(dx ~ count | sex, data=d)}d <- list(x=1:10, a=factor(rep(c('a','b'), 5)), b=structure(letters[1:10], label='label for b'), d=c(rep(TRUE,9), FALSE), f=pi*(1 : 10))x <- asNumericMatrix(d)attr(x, 'origAttributes')matrix2dataFrame(x)detach('dfr')# Run summarize on a matrix to get column meansx <- c(1:19,NA)y <- 101:120z <- cbind(x, y)g <- c(rep(1, 10), rep(2, 10))summarize(z, g, colMeans, na.rm=TRUE, stat.name='x')# Also works on an all numeric data framesummarize(as.data.frame(z), g, colMeans, na.rm=TRUE, stat.name='x')
Run the code above in your browser using DataLab